
energies

Article

Self-Affine Analysis of ENSO in Solar Radiation

Thiago B. Murari 1,* , Aloisio S. Nascimento Filho 1 , Marcelo A. Moret 1,2 , Sergio Pitombo 1

and Alex A. B. Santos 1

1 Gestão e Tecnologia Industrial (PPG GETEC), Centro Universitário SENAI CIMATEC, Salvador 41650-010,
BA, Brazil; aloisio.nascimento@gmail.com (A.S.N.F.); mamoret@gmail.com (M.A.M.);
sergio.pitombo@fieb.org.br (S.P.); alex.santos@fieb.org.br (A.A.B.S.)

2 Senai CIMATEC, Universidade do Estado da Bahia—UNEB, Salvador 41150-000, BA, Brazil
* Correspondence: mura.learning@gmail.com

Received: 10 August 2020; Accepted: 11 September 2020; Published: 15 September 2020
����������
�������

Abstract: The major challenge we face today in the energy sector is to meet the growing demand
for electricity with less impact on the environment. South America is an important player in the
renewable energy resource. Brazil accelerated the growth of photovoltaic installed capacity in 2018.
From April of 2017 to April of 2018, the capacity increased by 1351.5%. It is expected to reach the
value of 2.4 GW until the end of the year. The new Chilean regulation requests that 20% of the total
electricity production in 2025 must come from renewable energy sources. The aim of this paper
is to establish time series behavior changes between El Niño Southern Oscillation and the solar
radiation resource in South America. The results can be used to validate the measured data of energy
production for new solar plants. The method used to verify the behavior of the time series was the
Detrended Fluctuation Analysis. Solar radiation data were collected in twenty-five cities distributed
inside the Brazilian solar belt, plus six cities in Chile, covering the continent from east to west, in a
region with high potential of solar photovoltaic generation. The results show the impact of El Niño
Southern Oscillation on the climatic behavior of the evaluated data. It is a factor that may lead to the
wrong forecast of the long-term potential solar power generation for the region.
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1. Introduction

Renewable energy sources may play an important role in solving the dilemma of increasing
energy production capacity by minimizing the environmental impact [1]. Some studies have been
investigated the potential contribution of renewable energy supplies to the global grid. It has been
indicated that, in the second half of this century, their contribution might range from 20% to more than
50% once we establish the correct government policies [2]. That has encouraged a large number of
studies, mainly in the photovoltaic energy field [3–6].

Regarding renewable energy investments, Brazil and Chile stand out in South America. Both are
the first and second destination countries for foreign investment. According to the Ministry of Mines
and Energy of Brazil (MME), the installed capacity of power generation in Brazil reached 150.4 GW in
2016, an increase of 9.5 GW in relation to 2015. Among the sources that stand out most are hydropower,
with 64.5%, and biomass, with 9.3%. Considering this import source, the total power supply reached
156.3 GW in 2016.

In addition, according to the monthly monitoring bulletin of the Brazilian Electric System from
MME, the solar photovoltaic source in Brazil has grown rapidly in recent years. Brazil reached the
end of 2018 with 2400 MW. Further, the 10-year Energy Expansion Plan (PDE 2024) estimates that the
installed capacity of solar generation in Brazil will reach 8300 MW by 2024.
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A Certified Energy Production Estimate (CEPE) was requested for new projects in Brazil [7].
It was calculated based on twelve consecutive months of measurements within a radius of up to 10 km
from the project. This local measured data were compared with the same period data obtained from
satellite models to obtain the Typical Meteorological Year (TMY), which was used in the calculation of
CEPE. Moreover, these certified data were correlated with a dataset collected from the closest weather
station for 10 years or more.

Brazil has great potential for photovoltaic power generation. The Northeastern region has the
highest potential of the country, with a mean solar Global Horizontal Irradiance (GHI) value of
5.9 kWh/m2. Figure 1 shows a map of photovoltaic power generation. It presents the maximum
annual energy yield (measured in kWh of annual energy generated by kWp of installed photovoltaic
energy) for the entire Brazilian territory.

Figure 1. Photovoltaic power generation potential in Brazil. The size of the blue circles represents the
number of inhabitants in each Brazilian city. Adapted from [8].

South America is impacted by the El Niño Southern Oscillation (ENSO). Both El Niño and La
Niña climate phenomena are known as ENSO. They are the opposite phases of a natural climate
pattern throughout the tropical Pacific Ocean ecosystem, which oscillates every 3 to 7 years [9]. These
events lead to significant differences in the average temperature of the oceans, winds, surface pressure,
and precipitation in parts of the Tropical Pacific Ocean [9].

Brazil has an energy matrix with a renewable-thermal configuration but essentially depends
on large hydropower plants, which can be an issue in times of severe drought. For instance, Brazil
had some severe droughts in the Amazon region in the years of 2005 [10], 2010 [11], and 2016 [12].
The same drought conditions were experienced in the Northeastern region in 2005, 2007, 2010, 2012,
and 2016 [12,13]. Once the drought impacts are well-known, the current growth of non-hydropower
plants in the country will be justified.
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El Niño is associated with above average rainfall in Central Chile during winter and late spring.
The La Niña is related to below average rainfall in the same period and region. El Niño is dry and La
Niña is wet in Southern-Central Chile during the summer [14]. El Niño and La Niña intensities are
based on the Oceanic Niño Index values [15,16].

South America is a drought hot spot in some future weather projections because of its potential to
drastically react to excessive warming and drying [13,17], and El Niño events are important predictors
for severe droughts over the Brazilian Amazon and Northeast [18,19]. The greatest analyzed drought,
between 1982 and 2017, is an unprecedented dry period [12].

Significant local studies on the effects of ENSO in various parts of the globe have been important
in establishing the prediction of solar energy [20–22]. Da Silva provides an overview study of the
decrease of solar radiation for four climatic zones of northeastern Brazil, which can be attributed to
the global dimming effect influenced by ENSO [23]. The variability of the solar irradiation in the
Atacama Desert (northern Chile with a GHI of 3300 kWh/m2 on latitude tilt surfaces [24]) is influenced
by ENSO. These phenomena will result in years with significantly different solar irradiation than
the TMY [25]. The solar radiation time series have characteristics associated with natural climatic
phenomena, revealing that a reduction in solar radiation can be considered an indirect indicator of an
ENSO period [26].

This brings out the following question: does ENSO uniformly impact the solar radiation in South
America? The aim of this paper is to establish time series behavior changes between ENSO and the
solar radiation resource spatially. These relationships may be used to guide solar radiation estimates
for new solar energy plants. Therefore, the scope of this work is limited to the evaluation of the solar
radiation variable. The main contributions of this paper are the discovery of a spatial pattern for the
dynamic behavior of solar radiation in northeastern Brazil and the presence of extreme changes in
solar radiation time series behavior in some cities due to ENSO.

2. Materials and Methods

2.1. Dataset Acquisition

All measurements represent the accumulated solar radiation per 3 h (MJ/m2) and were provided
by the Brazilian Center for Weather Forecasting and Climate Studies (CPTEC) of the National Institute
for Space Research (INPE-CPTEC, http://sinda.crn.inpe.br/PCD/SITE/novo/site/index.php) and
the National Agro-climatic Network (INIA Agrometeorologia, https://agrometeorologia.cl). These
data were automated collected from weather stations that are widely distributed in several regions
of Brazil, within the solar belt, and Chile. The chosen region has a huge potential for solar power
generation. Datasets from thirty-one cities that reached a maximum threshold of 10% of lost data
inside these regions were evaluated (Figure 2 and Table 1). The lost data were removed from the city
datasets. An example of these raw data with blanks can be seen in Figure 3, which represents the
collected data from Piatã during the El Niño, between 2015 and 2016.

This threshold was defined based on the result behavior, which presents crossovers from
uncorrelated signals in a short range to correlated signals in a long range. According to [27], the global
scaling exponent of positively correlated signals (1.5 ≥ α > 0.5) remains unaffected, even for a data
loss of up to 90%, and shows no observable changes in the local scaling for up to 65% of the data loss.
However, removing a small segment of the data strongly affects anti-correlated signals, leading to a
crossover from an anti-correlated regime at a small scale to an uncorrelated regime at a large scale [28].

These data were collected within three different periods of time, each one corresponding to a full
year (2920 points maximum per year, disregarding lost data) as follows. The selected period coincides
with a very strong occurrence of El Niño and a strong occurrence of La Niña [9]:

• La Niña—from 1 June 2010, to 1 June 2011;
• Neutral—from 1 June 2013, to 1 June 2014;
• El Niño—from 1 June 2015, to 1 June 2016;

http://sinda.crn.inpe.br/PCD/SITE/novo/site/index.php
https://agrometeorologia.cl
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Table 1. Cities of the weather stations where the analyzed data were collected. Tagged cities from 1 to
25 are inside Brazil, and those from 26 to 31 are inside Chile.

Tag State or Region City

1 Ceará Canindé
2 Ceará Quixeramobim
3 Paraíba Capim
4 Bahia São Desidério
5 Bahia Irecê
6 Bahia Piatã
7 Minas Gerais Montes Claros
8 Minas Gerais Santa Vitória
9 Minas Gerais Santa Fé
10 Minas Gerais Belo Horizonte
11 Mato Grosso do Sul Campo Grande
12 Mato Grosso do Sul Corumbá
13 Mato Grosso do Sul Coxim
14 Mato Grosso do Sul Jardim
15 Pernambuco Arcoverde
16 Pernambuco Belém do São Francisco
17 Pernambuco Petrolina
18 Pernambuco São José do Egito
19 Maranhão Açailândia
20 Maranhão Coroatá
21 Maranhão Riachão
22 Maranhão Santa Inês
23 Maranhão Urbano Santos
24 Tocantins Chapada da Natividade
25 Goiás Anápolis
26 Arica and Parinacota Lluta Bajo, Arica
27 Maule Botalcura, Pencahue
28 O′Higgins El Tambo
29 Coquimbo Las Rojas, La Serena
30 Maule Los Despachos, Cauquenes
31 Bío Bío Coronel de Maule
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Figure 2. The accumulated solar radiation was collected from thirty-one cities in Brazil and Chile
within the high potential region for solar energy production.
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Figure 3. Raw time series of accumulated solar radiation per 3 h in Piatã, Bahia, during the El Niño
period. The blanks in the chart are the lost data from weather stations.

2.2. Self-Affinity Analysis Method

Detrended Fluctuation Analysis (DFA) [29] was proposed to analyze long-range power-law
correlations in nonstationary systems and extended to higher order polynomials in [30]. It has been
widely applied in non-stationary time series, including the following: cloud structures evaluation [31],
astrophysical systems [32], weather analyses [33–40], and solar radiation [41,42].

First order DFA (DFA1) is calculated according to the following steps. The original time series
si is the accumulated solar radiation (MJ/m2) per 3 h, with i = 1, ..., N, and N is the total number of
measurements registered. The time series si is integrated, where 〈s〉 is the average value of si.

y(k) =
k

∑
i=1

[si − 〈s〉]. (1)

The integrated signal y(k) is divided into non-overlapping boxes of equal length n; y(k) is
fitted using a polynomial function, which represents the trend in this box. y(k) is then detrended
by subtracting the local trend yn(k) within each box (k) of length n. For a given size box,
the root-mean-square fluctuation, F(n), is calculated as

F(n) =

√√√√ 1
N

N

∑
k=1

[y(k)− yn(k)]2. (2)

Equation (2) is repeated for a wide range of scales to estimate the relationship between F(n) and
the box size. The scaling exponent α is characterized by power law F(n) ∼ nα, indicating a self-affinity
parameter expressing the long-range power-law correlation properties.

Furthermore, the scaling exponent α is used to assess the long-range correlation influences on the
future behavior. The α exponent is classified according to the following rules, as previously applied
by [43–45]:

• anti-persistent signal (0 < α < 0.5);
• white noise with no memory (α = 0.5);



Energies 2020, 13, 4816 7 of 17

• persistent signal (0.5 < α < 1);
• noise type 1/ f (α = 1);
• sub-diffusive process (1 < α);
• brown noise (α = 1.5).

A positive correlation, in time series, means that an increasing trend in the past may be followed
by an increasing trend in the future. It has a persistent signal. A negative correlation means that an
increasing trend in the past may be followed by a decreasing trend in the future. This signal is called
anti-persistent [46].

The normal diffusion mean squared displacement of diffusing particles has a linear time dependence,
one characteristic of Brownian motion and a result of the central limit theorem [47], where all steps in
the diffusion process have an equal length and travel time. However, many dynamic systems mean
that squared displacement presents a non-linear growth over time. A long step, called super diffusion,
may be very fast, and a short step, known as sub-diffusion, may be very slow [48]. This anomalous
diffusion, described by a power law, has a non-linear relation to time [49].

3. Results and Discussion

The results of the self-affinity evaluation indicated, through the correlation exponent α,
the presence of crossover.

Crossover is a change point in a scaling law, where one scaling exponent applies for small scale
parameters and another scaling exponent applies for large scale parameters [43,50]. The crossover
points were accurately determined by the derivative of the F(n) curve for each analyzed city. The first
crossover point for all curves is on n = 9. The second crossover point found for all curves is on n = 80
(10 days). Thus, based on the first derivative of the F(n) curve, the initial and final scales to fit the F(n)
curve were defined, within each scale range, as follows:

• Table A1 = n ≤ 9 (≤ 27 h);
• Table A2 = 9 < n ≤ 80 (≤ 10 days);
• Table A3 = n > 80 (> 10 days).

The presence of crossovers has been found in other studies using DFA. Two different scale
exponents were found in the wind speed in the Abrolhos region, Brazil. There was a sub-diffusive
process in small time scales, and the process was persistent in long time scales. This is important
because wind energy is directly related to solar radiation, once winds are generated by the non-uniform
heating of the planet’s surface [51]. The scaling exponent α for sunspots presented crossover behavior
in the logÃ¢-log plot of f(t) versus time (t) [52]. The Atlantic and Pacific sea surface temperature
fluctuations, for the period of 1856 to 2001, presented two pronounced scaling regimes. In the
short-time regime that roughly ends at 10 months, the α of the northern Atlantic (≈1.4) differs from
that of the other oceans (≈1.2). This behavior is distinct from the temperature fluctuations on land,
where α is close to 0.65, typically above 10 days [53].

We ran hypothesis tests to assess and validate whether these data could be described as power
laws. The greatest found Prob > F was 1.05623 · 10−6 for the Neutral period of Petrolina, and every
Pearson coefficient was greater than 0.9, thus corroborating the calculated DFA coefficients.

Firstly, α was calculated for a short range, representing a box of twenty-seven hours (Table A1 in
Appendix A). For both Brazil and Chile, the coefficient was persistent in any period (ENSO or neutral),
except for Capim (0.49± 0.01) in the neutral year and Jardim (0.49± 0.01) in the La Niña year, both
anti-persistent but very close to the persistent interval. We recall that a linear trend was removed
(yn(k)) to calculate the α.

The second period was related to the DFA coefficient of solar radiation between twenty-seven
hours and ten days (Table A2). Chilean evaluated cities always presented an anti-persistent coefficient.
In Brazil, the α for each city was essentially anti-persistent, except for Capim (0.57± 0.02) and Coxim
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(0.54± 0.01) in the neutral seasons, Santa Vitória (0.55± 0.03) and Urbano Santos (0.57± 0.01) in El
Niño periods, and Jardim for all of the studied periods.

Further, the third calculated α represents a box of more than ten days (Table A3). The neutral
years were consistently persistent in Brazil, except for Campo Grande (0.47± 0.02). Some sub-diffusive
values were found for both evaluated ENSO years in São Desidério, Santa Vitória, and Coxim. Every
evaluated city in Chile had persistent or sub-diffusive behavior. The smallest value was 0.70± 0.04,
in Lluta Bajo. El Tambo, Los Despachos, and Coronel de Maule presented sub-diffusive coefficients.
Besides that, El Tambo moved from persistent in the Neutral period to sub-diffusive during ENSO
(Figure 4).

Figure 4. Chilean solar radiation range for a time scale window greater than ten days. The error bar
represents one standard error of the Detrended Fluctuation Analysis (DFA) coefficient.

Moreover, some cities presented a huge range variation in the α for solar radiation (Figure 5).
Coxim stands out in this evaluation, presenting the largest range in the α, changing from an
anti-persistent state in El Niño periods to a sub-diffusive one during La Niña, and became persistent
in the neutral year (Figure 6).

The sub-diffusive process, for a scale above 10 days, indicates dynamic behavior in the solar
irradiation. This characteristic interferes with predictability in the long-term evaluation of solar
radiation, and makes decisions based on those datasets. A sub-diffusive process represents a chaotic
process, stated in [49,54] and proved in [55]. This factor may impact the CEPE of regions where the
neutral period is persistent. Figure 7 shows the monthly accumulated solar radiation for the city of
Coxim. The graph shows that an estimate of Coxim’s solar radiation based on La Niña (sub-diffusive)
is completely different from estimations in the Neutral period (persistent).

In contrast, in this same period, some cities presented a small range variation in α (Figure 8).
Corumbá is the most stable city between the thirty-one evaluated cities. It presented the smallest range
variation in the α for solar radiation during the (a) El Niño, (b) La Niña, and (c) neutral seasons, for all
time scales.
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Figure 5. Cities that presented a huge range variation in the α for solar radiation for a time scale
window greater than ten days. Canindé, São Desidério, and Santa Vitória were impacted by the El Niño
season, moving from a persistent state to a sub-diffusive one. Coxim moved from an anti-persistent
state to a sub-diffusive during the La Niña season. Chapada da Natividade were impacted by El
Niña, and reached an anti-persistent α value. The error bar represents one standard error of the
DFA coefficient.

Figure 6. Coxim (MS) is the city that presented the greatest range variation in the α for solar
radiation, moving from an anti-persistent state in (a) El Niño to a sub-diffusive one during (b) La Niña,
and become persistent in (c) the neutral year, for a time scale window greater than ten days.

We used a statistical equivalence test for means with paired observations to evaluate the whole
series. El Niño presented a higher mean than the Neutral and La Niña periods for a confidence level of
0.05. We cannot claim that the La Niña mean is higher than that of the Neutral periods. This reveals
a statistically significant difference in El Niño DFA coefficients, systematically more persistent than
the others.

In order to demonstrate the existence of spatial patterns in the alpha values, the persistence range
was split in two steps (lower range of persistence = 0.50 < α < 0.75; higher range of persistence =
0.75 ≤ α < 1). A Brazilian map was divided by Above the Dashed Line (ADL) and a Below the Dashed
Line (BDL) regions, only for visual purposes.
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Figure 7. Monthly accumulated solar radiation for the city of Coxim. The accumulated solar radiation
value is much higher in La Niña (2010–2011) than in other periods.

Figure 8. Cities that presented small range variations in the α for solar radiation for a time scale
window greater than ten days. Corumbá, São José do Egito, Açailândia, and Urbano Santos have a
persistent signal. The α, ranging through all studied seasons, never exceeded 0.05. This indicates some
stability in the evaluated dataset. The error bar represents one standard error of the DFA coefficient.

Considering the Brazilian neutral period as a baseline (Figure 9c), most alpha values changed
from a lower range to a higher range of persistence ADL during El Niño (Figure 9a). The La Niña
period did not present the same effect ADL (Figure 9b). BDL, neither El Niño nor La Niña presented a
clear pattern of changes from the baseline.
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El Niño also affected the scale in the north of Chile changing the city result from a higher range on a
neutral period (Figure 10c) to a lower range of persistence (Figure 10a). La Niña moved the alpha value
from sub-diffusive to persistent in the cities Los Despachos and Coronel de Maule, the southernmost
cities among those analyzed (Figure 10b).

Figure 9. Spatial evaluation of α values for the El Niño (a), La Niña (b), and Neutral (c) periods in
Brazil. The maps were divided by Above the Dashed Line (ADL) and a Below the Dashed Line (BDL)
regions, only for visual purposes. Most alpha values changed from a lower range to a higher range of
persistence ADL during El Niño.
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Figure 10. Spatial evaluation of α values for El Niño (a), La Niña (b), and Neutral (c) periods in Chile.
La Niña moved the alpha value from sub-diffusive to persistent in the cities Los Despachos and Coronel
de Maule, the southernmost analyzed cities.

4. Conclusions

In summary, the self-affinity of the time series for solar radiation in South America was analyzed.
The neutral period was characterized mainly by the persistent behavior, determined as a desired state.
However, El Niño and La Niña showed some variation in the DFA coefficient, α, sometimes moving
from persistent to anti-persistent or sub-diffusive in the same city. This means that ENSO impacts the
behavior of time series of solar radiation in South America.

We found that El Niño was systematically more persistent than the other periods. The impact
was visually homogeneous ADL in Figure 9. This spatial pattern may be compared to rainfall in Brazil,
where the North–Northeast of Brazil experiences an increase in precipitation and the South becomes
dry during La Niña, while the opposite occurs in El Niño. Moreover, the results show the presence of
crossover, a similar behavior found in other atmospheric variables in the region. La Niña impacted the
Chilean cities of Los Despachos and Coronel de Maule, changing the α from sub-diffusive to persistent.

The sub-diffusive process indicates a dynamic series, like a transition state or transient condition.
This condition may affect the evaluation of the solar plant efficiency estimate if the measurements for
CEPE were collected during ENSO (i.e., Figure 7). The different behaviors found, for the same location,
can lead to an assessment that does not represent the long-term solar energy potential generation,
estimated for a period of ten years. This is a new implication for the prediction of large-scale generation
of solar energy. This evaluation using DFA may be complementary to the other methods already in
use, in order to validate the collected data.

Initially, it may be suggested that ENSO periods be avoided when collecting local data for CEPE.
On the other hand, future studies should focus on the use of complex methods and the development
of computational models to improve CEPE, trying to correlate neutral periods with ENSO-modified
behavior. Governments may update their energy policies for solar plant projects based on this climatic
behavior. Chile, for example, require new solar plant projects to be competitive in a free market [56],
but a forecast based on a sub-diffusive behavior may lead to a wrong decision.
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To the best of our knowledge, this is the first time that the self-affinity of solar radiation has been
evaluated in a large area of South America, revealing changes in the time series fluctuation affecting
the climatic behavior of the region due to ENSO. This evaluation is a starting point to understanding
the ENSO effects on solar plant projects, where time series in the same location are compared. Future
studies may evaluate the cross-correlation between solar radiation, temperature, humidity, and wind
time series, during ENSO and neutral periods, for each weather station.
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Appendix A. Output Data

Table A1. The DFA coefficient (α) of solar radiation in less than twenty-seven hours.

Tag El Niño Error La Niña Error Neutral Error

1 0.74 0.06 0.77 0.06 0.77 0.06
2 0.79 0.07 0.78 0.06 0.71 0.06
3 0.56 0.01 0.79 0.07 0.49 0.01
4 0.80 0.07 0.79 0.07 0.79 0.07
5 0.80 0.07 0.78 0.07 0.79 0.07
6 0.80 0.07 0.78 0.07 0.77 0.07
7 0.78 0.07 0.77 0.06 0.78 0.07
8 0.62 0.04 0.78 0.07 0.70 0.05
9 0.79 0.07 0.79 0.07 0.79 0.07
10 0.79 0.07 0.79 0.07 0.78 0.07
11 0.79 0.06 0.79 0.07 0.80 0.07
12 0.79 0.07 0.79 0.07 0.79 0.07
13 0.51 0.01 0.78 0.06 0.59 0.00
14 0.62 0.00 0.49 0.01 0.61 0.00
15 0.74 0.05 0.75 0.06 0.76 0.06
16 0.77 0.06 0.80 0.07 0.79 0.07
17 0.81 0.07 0.80 0.07 0.80 0.07
18 0.80 0.07 0.77 0.07 0.77 0.07
19 0.77 0.06 0.76 0.06 0.76 0.06
20 0.80 0.07 0.79 0.07 0.77 0.07
21 0.79 0.07 0.50 0.00 0.78 0.07
22 0.78 0.07 0.77 0.06 0.79 0.07
23 0.66 0.00 0.78 0.07 0.78 0.07
24 0.72 0.01 0.85 0.08 0.80 0.07
25 0.78 0.06 0.77 0.06 0.77 0.06
26 0.78 0.07 0.79 0.07 0.79 0.07
27 0.84 0.08 0.83 0.07 0.81 0.07
28 0.83 0.08 0.57 0.06 0.78 0.07
29 0.81 0.07 0.80 0.07 0.81 0.07
30 0.84 0.08 0.84 0.08 0.84 0.08
31 0.84 0.08 0.84 0.08 0.85 0.08
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Table A2. The DFA coefficient (α) of solar radiation between twenty seven hours and ten days.

Tag El Niño Error La Niña Error Neutral Error

1 NA 0.01 0.19 0.01 0.23 0.01
2 NA 0.01 0.21 0.01 NA 0.02
3 0.46 0.01 0.21 0.02 0.57 0.02
4 0.23 0.02 0.14 0.01 0.24 0.03
5 NA 0.01 0.22 0.02 0.21 0.01
6 0.20 0.02 0.22 0.02 0.22 0.02
7 0.18 0.02 0.20 0.02 0.24 0.02
8 0.55 0.03 0.22 0.02 0.35 0.03
9 0.16 0.02 0.19 0.02 0.23 0.02
10 0.25 0.02 0.24 0.02 0.31 0.02
11 0.30 0.02 0.26 0.02 NA 0.02
12 0.24 0.02 0.27 0.02 0.27 0.02
13 0.48 0.01 0.22 0.01 0.54 0.00
14 0.55 0.01 0.57 0.00 0.50 0.01
15 0.23 0.01 0.22 0.01 0.20 0.01
16 NA 0.01 0.15 0.02 0.15 0.01
17 0.10 0.01 0.22 0.01 0.16 0.02
18 0.14 0.01 0.21 0.01 0.20 0.02
19 0.21 0.01 0.27 0.01 0.23 0.01
20 NA 0.01 0.17 0.01 0.23 0.02
21 0.19 0.02 0.49 0.00 0.23 0.02
22 0.16 0.01 0.18 0.01 0.18 0.01
23 0.57 0.01 0.19 0.01 0.20 0.01
24 NA 0.00 0.28 0.02 NA 0.03
25 0.19 0.02 0.20 0.02 0.23 0.02
26 0.11 0.01 0.08 0.01 0.07 0.01
27 0.33 0.02 0.39 0.02 0.34 0.02
28 0.25 0.02 NA 0.02 0.22 0.02
29 0.17 0.01 0.17 0.01 0.16 0.01
30 0.21 0.02 0.22 0.02 0.17 0.02
31 0.18 0.02 0.21 0.02 0.14 0.02

Table A3. The DFA coefficient (α) of solar radiation for more than ten days.

Tag El Niño Error La Niña Error Neutral Error

1 0.98 0.05 0.57 0.01 0.60 0.03
2 0.77 0.03 0.63 0.01 0.61 0.01
3 0.85 0.03 0.61 0.02 0.67 0.01
4 1.10 0.03 0.82 0.05 0.61 0.01
5 0.77 0.04 0.64 0.01 0.72 0.02
6 0.84 0.04 0.66 0.01 0.79 0.01
7 0.81 0.02 0.88 0.03 0.78 0.02
8 1.16 0.02 0.68 0.01 0.88 0.01
9 0.77 0.01 0.81 0.00 0.68 0.01
10 0.70 0.01 0.84 0.02 0.75 0.02
11 0.62 0.00 0.73 0.01 0.47 0.02
12 0.67 0.00 0.65 0.02 0.69 0.02
13 0.48 0.01 1.00 0.03 0.55 0.01
14 0.74 0.03 0.55 0.00 0.52 0.02
15 0.59 0.03 0.52 0.02 0.54 0.01
16 0.76 0.04 0.62 0.02 0.61 0.01
17 0.91 0.04 0.65 0.01 0.69 0.01
18 0.73 0.04 0.70 0.03 0.71 0.01
19 0.60 0.03 0.57 0.01 0.57 0.01
20 0.70 0.03 0.61 0.04 0.70 0.02
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Table A3. Cont.

Tag El Niño Error La Niña Error Neutral Error

21 0.80 0.03 0.47 0.01 0.59 0.01
22 0.63 0.02 0.52 0.02 0.63 0.03
23 0.57 0.02 0.59 0.02 0.53 0.03
24 0.92 0.01 0.48 0.01 0.90 0.00
25 0.76 0.00 0.81 0.02 0.65 0.01
26 0.70 0.04 0.92 0.05 0.83 0.06
27 0.90 0.03 0.88 0.05 0.85 0.02
28 1.02 0.05 1.10 0.03 0.89 0.02
29 0.91 0.06 0.84 0.05 0.91 0.06
30 1.05 0.06 0.95 0.06 1.08 0.05
31 1.11 0.07 0.99 0.07 1.13 0.06
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